Химическая энциклопедия
 
А Б В Г
Д Е Ж З
И К Л М
Н О П Р
С Т У Ф
Х Ц Ч Ш
Щ Э Ю Я

МОЛЕКУЛЯРНАЯ МАССА , сумма масс атомов, входящих в состав данной молекулы; выражается в атомных единицах массы (а.е. м.). Поскольку 1 а.е.м. (иногда называемая дальтон, D) равна 1/12 массы атома нуклида 12С и в единицах массы СИ составляет 1,66057.10-27 кг, то умножение М.м. на 1,66057.10-27 дает абс. массу молекулы в килограммах. Чаще пользуются безразмерной величиной Мотн-относительной М.м.: Мотн =Mx/D, где Мх-масса молекулы x, выраженная в тех же единицах массы (кг, г или др.), что и D. М. м. характеризует среднюю массу молекулы с учетом изотопного состава всех элементов, образующих данное хим. соединение. Иногда М. м. определяют для смеси разл. в-в известного состава, напр. для воздуха "эффективную" М.м. можно принять равной 29.

Абс. массами молекул удобно оперировать в области физики субатомных процессов и радиохимии, где путем измерения энергии частиц, согласно теории относительности, определяют их абс. массы. В химии и хим. технологии необходимо применять макроскопич. единицы измерения кол-ва в-ва. Число любых частиц (молекул, атомов, электронов или мысленно выделяемых в в-ве групп частиц, напр. пар ионов Na+ и Сl- в кристаллич. решетке NaCl), равное Авогадро постоянной NА = 6,022.1023, составляет макроскопич. единицу кол-ва в-ва-моль. Тогда можно записать: Мотн = Mx.NA/(D.NA),T.е. относительная М.м. равна отношению массы моля в-ва к NAD. Если в-во состоит из молекул с ковалентными связями между составляющими их атомами, то величина Mx.NA представляет собой м о л я рн у ю м а с с у этого в-ва, единицы измерения к-рой кг-моль (киломоль, кМ). Для в-в, не содержащих молекул, а состоящих из атомов, ионов или радикалов, определяется ф о р-м у л ь н а я м о л я р н а я м а с с а, т.е. масса NA частиц, соответствующих принятой формуле в-ва (однако в СССР часто и в этом случае говорят о М.м., что неверно).

Ранее в химии использовали понятия грамм-молекула, грамм-атом, грамм-ион, теперь-моль молекул, моль атомов, моль ионов, подразумевая под этим NA молекул, атомов, ионов и соотв. их молярные массы, выраженные в граммах или килограммах. Традиционно употребляют в качестве синонима термин "молекулярный (молярный) вес", т. к. определение массы производится с помощью весов. Но, в отличие от веса, зависящего от географич. координат, масса является постоянным параметром кол-ва в-ва (при обычных скоростях движения частиц в условиях хим. р-ций), поэтому правильнее говорить "молекулярная масса".

Большое число устаревших терминов и понятий, касающихся М. м., объясняется тем, что до эры космич. полетов в химии не придавали значения различию между массой и весом, к-рое обусловлено разностью значений ускорения своб. падения на полюсах (9,83 м.с-2) и на экваторе (9,78 м.с-2); при расчетах силы тяжести (веса) обычно пользуются средним значением, равным 9,81 м.с-2. Кроме того, развитие понятия молекулы (как и атома) было связано с исследованием макроскопич. кол-в в-ва в процессах их хим. (реакции) или физ. (фазовые переходы) превращений, когда не была разработана теория строения в-ва (19 в.) и предполагалось, что все хим. соед. построены только из атомов и молекул.

Методы определения. Исторически первый метод (обоснованный исследованиями С. Канниццаро и А. Авогадро) предложен Ж. Дюма в 1827 и заключался в измерении плотности газообразных в-в относительно водородного газа, молярная масса к-рого принималась первоначально равной 2, а после перехода к кислородной единице измерений молекулярных и атомных масс-2,016 г. След. этап развития эксперим. возможностей определения М.м. заключался в исследовании жидкостей и р-ров нелетучих и недиссоциирующих в-в путем измерения коллигативных св-в (т. е. зависящих только от числа растворенных частиц) - осмотич. давления (см. Осмометрия), понижения давления пара, понижения точки замерзания (криоскопия)и повышения точки кипения (эбулиоскопия)р-ров по сравнению с чистым р-рителем. При этом было открыто "аномальное" поведение электролитов.

Понижение давления пара над р-ром зависит от молярной доли растворенного в-ва (закон Рауля): [(р - р0)/р] = N, где р0-давление пара чистого р-рителя, р-давление пара над р-ром, N- молярная доля исследуемого растворенного в-ва, N = (тх/Мх)/[(тх/Мх) + (m0/M0)], mx и Мх-соотв. навеска (г) и М.м. исследуемого в-ва, m0 и М0-то же для р-рителя. В ходе определений проводят экстраполяцию к бесконечно разб. р-ру, т.е. устанавливают 3022-3.jpg для р-ров исследуемого в-ва и для р-ров известного (стандартного) хим. соединения. В случае криоскопии и эбулиоскопии используют зависимости соотв. Dt3 = Кс и Dtк = Еc, где Dt3-понижение т-ры замерзания р-ра, Dtк - повышение т-ры кипения р-ра, К и Е-соотв. криоскопич. и эбулиоскопич. постоянные р-рителя, определяемые по стандартному растворенному в-ву с точно известной М.м., с-моляльная концентрация исследуемого в-ва в р-ре (с = Мхтх.1000/m0). М.м. рассчитывают по ф-лам: Мх = тхК.1000/m0Dt3 или Мх = тхЕ.1000/m0 Dtк. Методы характеризуются достаточно высокой точностью, т.к. существуют спец. термометры (т. наз. термометры Бекмана), позволяющие измерять весьма малые изменения т-ры.

Для определения М.м. используют также изотермич. перегонку р-рителя. При этом пробу р-ра исследуемого в-ва вносят в камеру с насыщ. паром р-рителя (при данной т-ре); пары р-рителя конденсируются, т-ра р-ра повышается и после установления равновесия вновь понижается; по изменению т-ры судят о кол-ве выделившейся теплоты испарения, к-рая связана с М.м. растворенного в-ва. В т. наз. изопиестич. методах проводят изотермич. перегонку р-рителя в замкнутом объеме, напр. в Н-образном сосуде. В одном колене сосуда находится т. наз. р-р сравнения, содержащий известную массу в-ва известной М. м. (молярная концентрация C1), в другом-р-р, содержащий известную массу исследуемого в-ва (молярная концентрация С2 неизвестна). Если, напр., С1 > С2, р-ритель перегоняется из второго колена в первое, пока молярные концентрации в обоих коленах не будут равны. Сопоставляя объемы полученных изопиестич. р-ров, рассчитывают М.м. неизвестного в-ва. Для определения М.м. можно измерять массу изопиестич. р-ров с помощью весов Мак-Бена, к-рые представляют собой две чашечки, подвешенные на пружинках в закрытом стеклянном сосуде; в одну чашечку помещают исследуемый р-р, в другую-р-р сравнения; по изменению положения чашечек определяют массы изопиестич. р-ров и, следовательно, М.м. исследуемого в-ва.

Осн. методом определения атомных и мол. масс летучих в-в является масс-спектрометрия. Для исследования смеси соед. эффективно использование хромато-масс-спектромет-рии. При малой интенсивности пика мол. иона применяют эффузиометрич. приставки к масс-спектрометрам. Эффузио-метрич. способ основан на том, что скорость вытекания газа в вакуум из камеры через отверстие, диаметр к-рого значительно меньше среднего пути своб. пробега молекулы, обратно пропорциональна квадратному корню из М.м. в-ва; скорость вытекания контролируют по изменению давления в камере. М.м. летучих соед. определяют также методами газовой хроматографии с газовыми весами Мартина. Последние измеряют скорость перемещения газа в канале, соединяющем трубки, по к-рым текут газ-носитель и газ из хроматографич. колонки, что позволяет определять разницу плотностей этих газов, зависящую от М.м. исследуемого в-ва.

М. м. измеряют для идентификации хим. соед., для установления содержания отдельных нуклидов в соед., напр. в воде, используемой в атомных энергетич. установках, а также при исследовании и синтезе высокомол. соед., св-ва к-рых существенно зависят от их М.м. (см. Молекулярная масса полимера). Средние значения М.м. полимеров устанавливают с помощью перечисленных выше методов, основанных на коллигативных св-вах разбавленных р-ров, по числу двойных связей ("мягким" озонолизом) или функц. групп (методами функцион. анализа), а также по таким св-вам их р-ров, как вязкость, светорассеяние. Средние значения мол. масс полимеров высокой степени полимеризации определяют по их реологич. характеристикам.

Лит.: Рафиков С. Р., Павлова С. А., Твердохлебова И. И., Методы определения молекулярных весов и полидисперсности высокомолекулярныхсоединений, М., 1963; Полинг Л., Полинг П., Химия, пер. с англ., М., 1978; Вилков Л. В., Пентин Ю. А., Физические методы исследования в химии, М., 1987. Ю.А.Клячко.

Hosted by uCoz