Химическая энциклопедия
 
А Б В Г
Д Е Ж З
И К Л М
Н О П Р
С Т У Ф
Х Ц Ч Ш
Щ Э Ю Я

ХЛОР (от греч. chloros - желто-зеленый; лат. Chlorum) C1, хим. элемент VII гр. периодич. системы, относится к галогенам; ат. н. 17, ат. м. 35,453. Прир. X. состоит из смеси двух изотопов 35С1 (75,77%) и 37С1 (24,23%); ядра обоих изотопов имеют электрич. квадрупольный момент. Конфигурация внеш. электронной оболочки атома 3s25; степени окисления -1 (хлориды), +1 (гипохлориты), +3 (хлориты), +5 (хлораты)и +7 (перхлораты); сродство к электрону 3,614 эВ; потенциал ионизации при последоват. переходе от С1° к С17+ 12,96776, 23,805, 39,90, 53,50, 67,80, 96,7 и 114,27 эВ; электроотрицательность по Полингу 3,16; ковалентный радиус С1° 0,099 нм; ионные радиусы (в скобках указаны координац. числа) Сl-0,167 нм (6), С15+ 0,026 нм (3), С17+ 0,022 нм (4), 0,041 нм (6).
Молекула X. двухатомна, длина связи (в газе) r = 0,1987 нм. Имеет два связанных состояния6004-9.jpg и6004-10.jpg последнее -возбужденное с энергией 2,2109 эВ и r = 0,2435 нм. Эти состояния коррелируют с валентными состояниями атома хлора6004-11.jpg и6004-12.jpg. Сродство С12 к электрону 2,45 эВ, потенциал ионизации 11,48 эВ. Энергия диссоциации С12 239,240 кДж/ моль, равновесная термич. диссоциация С12 на атомы определяются константой К°(Т) =р2(Сl)/р(Сl2), где р - давление; lgК° = -6,8257 (1000 К), 0,2660 (2000 К), 1,9617 (3000 К).
Среднее содержание X. в земной коре 1,7 x 10-2% по массе. Очень велики запасы X. в мировом океане (среднее содержание 18,83 г/л); в виде NaCl (50-240 г/л) находится в подземных рассолах. В земной коре X. встречается в осн. в виде каменной соли (галита) NaCl, карналлита KCl x MgCl2 x 6H2O, сильвина КС1, сильвинита NaCl x KCl, каинита КС1 MgSO4 x3H2O, бишофита MgCl2 x 6H2O, тахгидрита 2MgCl2 x CaCl2 x 12H2O; другие менее распространенные минералы - кераргирит AgCl, бисмоцелит BiOCl, псевдокотуннит К2РbС14, баумлерит 2КС1 xСаС12. Содержание X. в силикатных (каменных) метеоритах 0,09%, в железных - 0,36% (в осн. в виде FеС13), в вулканич. газах - до 1,3% (в виде С12, НС1, NaCl и др.). Содержание X. в человеческом теле 0,25% (0,45% от сухой массы); в плазме крови 0,32-0,37%, в растениях зависит от вида и от состава почвы, напр., табак содержит 2,3% X., морковь - 1,5%, зерно - 0,05%, картофель - 0,03%.

Свойства. X.- желто-зеленый газ с резким удушающим запахом; т. пл. -100,98 °С, т. кип. -33,97 °С; тройная точка: т-ра 172,17 К, давление 1,392 кПа, dp/dT= 0,128 кПа/К; tкрит143,75 °С, ркрит7977,3 кПа, dкрит 0,573 г/см3; ур-ние температурной зависимости плотн. в интервале от -90 до 80 °С d= 1,6583346 - 0,002003753/(t + 80) + 0,0545596743 x (t+ 80)2 г/см3, при 25 °С плотн. 3,214 г/см3, плотн. твердого при -195 °С 2,13 г/см3; для С12:6004-13.jpg 33,949 Дж/(моль x К),6004-14.jpg 6,757 кДж/моль,6004-15.jpg 22,43 кДж/моль,6004-16.jpg 222,965 Дж/ (моль x К); для атома С1 (газ):6004-17.jpg 21,838 Дж/(моль x К),6004-18.jpg 121,302 кДж/моль,6004-19.jpg 165,076 Дж/(моль x К); для иона Сl-(газ):6004-20.jpg 20,786 Дж/(моль x К),6004-21.jpg 153,346 Дж/(моль x К),6004-22.jpg -233,670 кДж/моль,6004-23.jpg Сl- (в воде) -167,080 кДж/ моль; ур-ние температурной зависимости давления пара lnp = A + B/T+ClnT+DT+E(F-T)/FT (205-417 К), где А = 62,402508, В = -4343,5240, С = -7,8661534, D = = 1,0666308 x 10-2, E = 95,248723, F = 424,90; при 20 °С давление пара С12 0,669 МПа;6004-24.jpg4,88 x 10-4 Па x с, ур-ние температурной зависимости6004-25.jpg= [0,00585(1 + 0,05878t - 0,05392t2)] х 10-5 Па x с (от -34 до -77 °С);6004-26.jpgx 10-5 Н/см 31,61 (-61,3 °С), 28,38 (-44,5 °С), 25,23 (-28,7 °С), ур-ние температурной зависимости6004-27.jpg= [21,70(1 - 0,007742t)] x 10-5 Н/см;6004-28.jpg 1,00152 (25 °С), 2,147 (-65,15 oC), 2,088 (-45,25 °С), 2,051 (-22,0 °С), 1,968 (0 °С), 1,54 (142 °С). Электродный потенциал С12 (газ, 0,1 МПа)/С1- (в воде коэф. активности ~ 1) 1,3583 В; изотермич. коэф. сжимаемости жидкого X. в интервале 0-10 МПа 0,0118%/МПа, адиабатич. коэф. сжимаемости газообразного X. 5,73 x 10-5%/мм рт. ст.; температурный коэф. объемного расширения 21,9 x10-4 К-1 (298К); теплопроводность 0,079 Вт/(мx К) при 273 К. Кристаллизуется при -160 °С в ромбич. решетке, а = 0,624 нм, b = 0,448 нм, с = 0,826 нм, z = 4, пространств. группа Cmca, r = 0,1980 нм.
X. хорошо раств. в неполярных жидкостях, хуже - в воде. Р-римость, % по массе: в СС14 - 16,4 (0 °С), 8,46 (25 °С), бензоле - 24,7 (10 °С), 18,5 (20 °С), 14,7 (30 °С), воде - 1,44 (О °С), 1,07 (6 °С), 0,828 (15 oC), 0,711 (20 °С), 0,626 (25 °С), 0,449 (40 °С), 0,323 (60 °С). В конц. р-рах NaCl р-римость С12 в неск. раз ниже, чем в воде. В водном р-ре X. устанавливается равновесие:

6004-29.jpg

Из водного р-ра кристаллизуется клатрат С12 x 2О, давление его диссоциации 0,1 МПа при 9,6 °С. С ионом СГ молекулы С12 образуют в водном р-ре ионы6004-30.jpg по р-ции:6004-31.jpg +6004-32.jpgK = 0,19. Жидкий X. сам может служить р-рителем, напр. р-римость в С12, % по массе: ВС13 65,5 (-136,4 °С), SiCl4 28,8 (О °С), Т1С14 74,9 (20 °С).
X. - один из наиб. химически активных элементов, он непосредственно взаимод. со всеми металлами и большинством неметаллов (образуя хлориды), лишь р-ция X. с О2, N2 и Хе требует спец. методов активации - УФ облучения или электроразряда, в остальных случаях достаточно простого нагревания. Хлорирование наиб. пассивных к X. металлов начинается при след. т-рах, °С: Ni 680, Mg 600, Pt 560, W 540, Сг 520, Mo 420, Та 380, Ag 260, Ti 250, Си и А1 240, Fe 215. Сера и фтор реагируют с X. при комнатной т-ре, Si -при 200 °С, углерод в виде графита устойчив к X. до 700 °С. Реакционная способность оксидов металлов по отношению к X. (образуются хлориды) значительно ниже, чем у соответствующих металлов, и убывает в ряду: Na2O, Ag2O, CaO, PbO, CdO, MnO, NiO, ZnO, FeO, MgO, Fe2O3, ZnO2, TiO2, A12O3,
SiO2. В присут. углерода т-ра хлорирования оксидов снижается.
Причина высокой химической активности X.- в сравнительной легкости образования атомов С1 из молекул С12, в высоком сродстве атома X. к электрону (самое высокое среди атомов хим. элементов; выше, чем у фтора) и в высокой энергии связи X. с большинством элементов. Стабильные соед. X.- хлориды, гипохлориты, хлориты, хлораты, перхлораты. Действит. заряд на атоме С1 во всех соед. этих классов по абс. величине значительно ниже формального. Из-за высокого сродства атома С1 и хлоркислородных радикалов к электрону X. бывает анионом, входит в состав аниона (6004-33.jpg,6004-34.jpg6004-35.jpg,6004-36.jpg ) или является лигандом в комплексных анионах6004-37.jpg6004-38.jpgи т. п.
Сильно экзотермич. р-ция X. с Н2 (С12 + Н26004-39.jpg2НС1) приводит к образованию хлористого водорода (см. Соляная кислота), она может протекать взрывообразно, особенно на свету: КПВ для системы Н2 - С12 11,5 - 95% по объему X. В присут. А1С13 р-ция гладко протекает в темноте при 130 °С.
Прямое взаимод. X. с N2 возможно только в электроразряде, единств. известный бинарный хлорид азота NC13 чрезвычайно взрывчат, получают его хлорированием NH3 или солей аммония (см. Азот). С кислородом X. образует неск. хлора оксидов, наиб. важны С12О, С1О2, С12О6 и С12О7. Все оксиды X. нестабильны и взрывоопасны. С фтором X. образует 3 бинарных фторида: C1F, C1F3 и C1F5, все они м. б. получены прямой р-цией между элементами. Попытка выделить высш. фторид X. не привела к успеху, однако известны его производные, напр. кристаллич.6004-40.jpg Прямой р-цией С12 с др. галогенами м. б. получены IC1, IС13 и BrCl. См. также Галогенфториды, Межгалогенные соединения. О взаимод. X. с орг. в-вами см. Галогенирование.

Получение. Практически весь производимый в мире X. получают электрохим. методом6004-41.jpg6004-42.jpg - электролизом водного р-ра NaCl или, гораздо реже, КС1. Другие продукты электролиза - щелочь (1,13 т NaOH на 1 т С12) и Н2. На получение 1 т X. расходуют в зависимости от способа произ-ва от 2300 до 3700 кВт x ч электроэнергии, что составляет примерно 50% издержек произ-ва (в ценах на электроэнергию 1975), причем эта доля имеет тенденцию к росту. На произ-во X. в США затрачивают ~2% всей вырабатываемой электроэнергии и 28% энергии, потребляемой в электрохим. пром-сти.
Используют 3 метода электролиза р-ров хлоридов: 1) ртутный; катод - Hg, X. выделяется на твердом аноде и электродные пространства не разделены; 2) диафрагменный; оба электрода твердые, анодное и катодное пространство разделены фильтрующей диафрагмой; 3) мембранный; анодное и катодное пространства разделены катионообменной мембраной. Первые два метода существуют ок. 100 лет, третий применяют с 1975. При электролизе по второму методу непосредственно в электролизере образуется р-р NaOH и NaCl в молярном отношении 1:1. Упариванием этого "электролитич. щелока" получают товарный NaOH, содержащий 2-3,5% (в пересчете на NaOH) NaCl. Электролизом по первому способу получают амальгаму щелочного металла, при водном разложении к-рой образуются конц. р-ры чистых щелочей NaOH или КОН. Возможность получения чистых щелочей, отвечающих требованиям, предъявляемым к реактивам, была осн. преимуществом ртутного метода до появления мембранного. Мембранный метод позволяет получать чистые щелочи без использования Hg, экологически менее опасен, требует меньшего расхода энергии и меньших капитальных вложений, поэтому доля X., полученного этим методом, непрерывно возрастает. Одновременно во всем мире падает доля ртутного метода. С 1986 Япония отказалась от ртутного метода.
До 60-х гг. в качестве материала для анодов в хлорном произ-ве использовался графит. Графитовые аноды подвергаются быстрому разрушению при электролизе, поэтому они заменены на металлические на основе Ti, Ti - Ru - Ir, Ti -Ir, Ti - Pt - Ir, покрытые активной массой из оксидов Ti и Ru. Оксиднорутениевые аноды обладают очень высокой коррозионной стойкостью (расход Ru ок. 0,1 г на 1 т С12) и обеспечивают хороший выход X. по току даже при высокой степени превращения NaCl в анодном пространстве.
Фильтрующие диафрагмы изготовлялись из асбестовой бумаги или волокна, ныне используют асбест с полимерными связующими, что предупреждает набухание диафрагмы, либо полимерные диафрагмы из пористой перфторир. пленки или волокна. Эти диафрагмы имеют срок службы более 500 сут.
Мембраны, непроницаемые для жидкости и газа, пропускающие лишь ионы Na+ и К+, имеют толщину 0,1-0,25 мм и размеры 2 х 2 м, материал мембран - сополимеры тетрафторэтилена с сульфонилированными или карбоксилированными перфторвиниловыми эфирами. Срок службы мембран ок. 2 лет. В лаб. условиях X. получают действием р-ра НС1 на пиролюзит МnО2.

Определение. Методы обнаружения и определения X. основаны на его окислит. св-вах. Для обнаружения X. в воздухе используют цветные р-ции - иод-крахмальную, желтое окрашивание флуоресцеина в щелочной среде. Для определения X. применяют иодометрич. метод, спектрофотометрич. методы - с о-толидином, с диметил- и диэтил-n-фенилендиаминами, с метиловым оранжевым и др. Потенциометрич. методы определения X. основаны на количеств. переводе его либо в Сl-, либо в СlO- с послед. титрованием. В газовом потоке X. может быть определен кулонометрически на газоанализаторе "Атмосфера-2". Атомно-абсорбционный, рентгеноспектральный и активационный метод используют в осн. для определения X. в виде хлорида.

Применение. X. расходуется на произ-во окислительно-отбеливающих в-в - кальция гипохлорита, натрия гипохлорита, LiClO, хлорной извести, а также хлоридов мн. элементов, разл. хлорорг. продуктов (поливинилхлорида, хлоропренового каучука, р-рителей, продуктов хлорирования углеводородов парафинового и ароматич. рядов), разл. хлорсодержащих пестицидов, нек-рых в-в, не содержащих хлор,- сульфанила, глицерина, этиленгликоля и т. п., для водоочистки. В мире на произ-во орг. продуктов расходуется от 50 до 85% производимого X., на произ-во неорг. продуктов - 10-15%, в целлюлозно-бумажной пром-сти - 2-15%, на очистку воды и др. санитарные нужды - 2-10%.
Мировое произ-во X. в 1991-92 составило 40-45 млн. т.
X. весьма токсичен, во время 1-й мировой войны его использовали как боевое ОВ. Содержание С12 в воздухе 0,006 мг/л оказывает раздражающее действие на дыхат. пути, 0,012 мг/л переносится с трудом, концентрация выше 0,1 мг/л опасна для жизни: дыхание становится частым, судорожным, паузы продолжительными, остановка дыхания наступает через 5-25 мин. Вдыхание X. более высокой концентрации может привести к мгновенной смерти в результате рефлекторного торможения дыхат. центра. ПДК в воздухе рабочей зоны 1,0 мг/м3, в атмосфере населенных пунктов разовая 0,1 мг/м3, среднесуточная 0,03 мг/м3.
Хранят X. в стальных баллонах зеленого цвета.
X. открыл К. Шееле в 1774, элементарную природу X. установили в 1807-13 Г. Дэви, Ж. Гей-Люссак и Л. Тенар.

Лит.: Пасманик М. И., Сасс-Тисовский Б. А., Якименко Л. М., Производство хлора и каустической соды. Справочник, М., 1966; Фурман А. А., Неорганические хлориды. (Химия и технология), М., 1980; Фрумина Н. С, Лисенко Н. Ф., ЧерноваМ. А., Хлор, М., 1983.

В. Я. Росоловский.

Hosted by uCoz