Химическая энциклопедия
 
А Б В Г
Д Е Ж З
И К Л М
Н О П Р
С Т У Ф
Х Ц Ч Ш
Щ Э Ю Я

ВАРИАЦИОННЫЙ МЕТОД в квантовой химии, метод приближенного решения ур-ния Шрёдингера для квантовой системы (атома, молекулы, кристалла). По своей идее близок к мат. методу оценки нек-рой величины из условия максимума или минимума определенной ф-ции (напр., методу наименьших квадратов).

В квантовохим. задачах В. м. обычно определяют волновую ф-цию1069-4.jpg стационарного состояния системы с гамильтонианом Я из условия минимума среднего значения энергии системы1069-5.jpg (1069-6.jpg-ф-ция, комплексно сопряженная с ср; интегрирование проводится по всей области изменения независимых переменных, описывающих систему). Величина1069-7.jpg наз. функционалом энергии системы. Согласно т. наз. вариационному принципу, для любой волновой ф-ции выполняется соотношение:1069-8.jpg, где Еo- наименьшая энергия системы в стационарном состоянии, т.е. энергия ее осн. состояния. Реально функционал энергии минимизируют в нек-ром ограниченном классе волновых ф-ций, наз. пробными, к-рые выбирают на основе физ. представлений о характере взаимод. частиц в системе. Поэтому если точное решение ур-ния Шрёдингера получить невозможно, то минимизируя1069-9.jpg в классе пробных ф-ций, находят волновую ф-цию, к-рая является макс. приближением к точной волновой ф-ции осн. состояния системы, и приближенное значение Eo.

Нахождение минимума этой ф-ции математически выражается условием обращения в нуль вариации:

1069-10.jpg

В линейном В.м. (методе Ритца) в кач-ве пробной волновой ф-ции для исследуемой системы принимают линейную комбинацию1069-11.jpg нек-рых разумно выбранных волновых ф-ций1069-12.jpg. При описании молекулярной системы в качестве1069-13.jpg м. 6. выбраны волновые ф-ции, отвечающие разл. валентным схемам (см. Валентных связей метод), или1069-14.jpg могут описывать отдельные электронные конфигурации системы (см. Молекулярных орбиталей методы). Коэф. ск линейной комбинации рассматриваются как переменные параметры системы, функционал энергии - как обычная ф-ция этих параметров. Приближенное решение ур-ния Шрёдингера проводится в итоге по след. схеме: 1) рассчитывают матричные элементы гамильтониана Hкl =1069-15.jpg и интегралы перекрывания1069-16.jpg для всех пар ф-ций1069-17.jpg и1069-18.jpgи строят матрицы гамильтониана Н и перекрывания S. 2) С помощью этих матриц условие экстремума функционала энергии представляют в форме:1069-19.jpg где1069-20.jpg-вектор, координаты к-рого - ск. 3) Находят ненулевые решения этого ур-ния, к-рым отвечает т. наз. вековое уравнение (термин небесной механики) det (Н — — ES) = О (det-символ определителя матрицы). Вековое ур-ние имеет (m+1) решений1069-21.jpg (к = 0, 1, 2, ..., т), к-рые являются оценками сверху для точных значений энергии системы в стационарном состоянии, занумерованных в порядке их возрастания:1069-22.jpg Возможность получения этих значений энергии в рамках линейного В.м. широко используют для изучения возбужденных состояний молекулярных систем.

Применяют и более сложные варианты В.м. Напр., при исследовании молекулы пробную волновую ф-цию конструируют из орбиталей, характеризующих состояние электрона в молекуле. Это позволяет найти ур-ния, задающие оптимальный набор орбиталей и эффективный потенциал, определяющий состояние электронов в молекуле. В.м. используют также для решения задач теории рассеяния, оценки энергий возбуждения и ионизации и др. Условие надежности расчетов, получаемых В. м., - правильные качеств. представления о природе исследуемого объекта и физически обоснованный выбор класса пробных ф-ций.

Лит.: Эпштейн С., Вариационный метод в квантовой химии, пер. с англ., М., 1977. В. И. Пупышев.

Hosted by uCoz