Химическая энциклопедия
 
А Б В Г
Д Е Ж З
И К Л М
Н О П Р
С Т У Ф
Х Ц Ч Ш
Щ Э Ю Я

ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ , ф-ции параметров состояния макроскопич. системы (т-ры Т, давления р, объема V, энтропии S, чисел молей компонентов ni, хим. потенциалов компонентов m, и др.), применяемые гл. обр. для описания термодинамического равновесия. Каждому Т.п. соответствует набор параметров состояния, наз. естественными переменными.

Важнейшие Т.п.: внутренняя энергия U (естественные переменные S, V, ni); энтальпия Н= U — (— pV) (естественные переменные S, p, ni); энергия Гельмгольца (свободная энергия Гельмгольца, ф-ция Гельмгольца) F = = U — TS (естественные переменные V, Т, ni); энергия Гиббса (своб. энергия Гиббса, ф-ция Гиббса) G=U — — TS — (— pV) (естественные переменные p, Т, ni); большой термодинамич. потенциал(естественные переменные V, Т, mi).4108-1.jpg

Т.п. могут быть представлены общей ф-лой

4108-2.jpg

где Lk - интенсивные параметры, не зависящие от массы системы (таковы Т, p, mi), Xk-экстенсивные параметры, пропорциональные массе системы (V, S, ni). Индекс l = 0 для внутренней энергии U, 1-для H и F, 2-для G и W. Т.п. являются ф-циями состояния термодинамической системы, т.е. их изменение в любом процессе перехода между двумя состояниями определяется лишь начальным и конечным состояниями и не зависит от пути перехода. Полные дифференциалы Т.п. имеют вид:

4108-3.jpg

Ур-ние (2) наз. фундаментальным ур-нием Гиббса в энергетич. выражении. Все Т. п. имеют размерность энергии.

Условия равновесия термодинамич. системы формулируются как равенство нулю полных дифференциалов Т.п. при постоянстве соответствующих естественных переменных:

4108-4.jpg

Термодинамич. устойчивость системы выражается неравенствами:

4108-5.jpg

Убыль Т.п. в равновесном процессе при постоянстве естественных переменных равна максимальной полезной работе процесса А:

4108-6.jpg

При этом работа А производится против любой обобщенной силы Lk, действующей на систему, кроме внеш. давления (см. Максимальная работа реакции).

Т.п., взятые как ф-ции своих естественных переменных, являются характеристическими ф-циями системы. Это означает, что любое термодинамич. св-во (сжимаемость, теплоемкость и т. п.) м. б. выражено соотношением, включающим только данный Т. п., его естественные переменные и производные Т.п. разных порядков по естественным переменным. В частности, с помощью Т. п. можно получить уравнения состояния системы.

Важными св-вами обладают производные Т.п. Первые частные производные по естественным экстенсивным переменным равны интенсивным переменным, напр.:

4108-7.jpg

[в общем виде: (9Yl/9Хi) = Li]. И наоборот, производные по естественным интенсивным переменным равны экстенсивным переменным, напр.:

4108-8.jpg

[в общем виде: (9Yl/9Li) = Xi]. Вторые частные производные по естественным переменным определяют мех. и тер-мич. св-ва системы, напр.:

4108-9.jpg

Т.к. дифференциалы Т.п. являются полными, перекрестные вторые частные производные Т. п. равны, напр. для G(T, p, ni):

4108-10.jpg

Соотношения этого типа называются соотношениями Максвелла.

Т. п. можно представить и как ф-ции переменных, отличных от естественных, напр. G(T, V, ni), однако в этом случае св-ва Т. п. как характеристич. ф-ции будут потеряны. Помимо Т.п. характеристич. ф-циями являются энтропия S (естественные переменные U, V, ni), ф-ция Массье Ф1 =4108-11.jpg (естественные переменные 1/Т, V, ni), ф-ция Планка 4108-12.jpg(естественные переменные 1/Т, p/Т, ni).

Т.п. связаны между собой ур-ниями Гиббса-Гельмгольца. Напр., для H и G

4108-13.jpg

В общем виде:

4108-14.jpg

Т.п. являются однородными ф-циями первой степени своих естественных экстенсивных переменных. Напр., с ростом энтропии S или числа молей ni пропорционально увеличивается и энтальпия Н. Согласно теореме Эйлера, однородность Т.п. приводит к соотношениям типа:

4108-15.jpg

В хим. термодинамике, помимо Т.п., записанных для системы в целом, широко используют среднемолярные (удельные) величины (напр.,4108-16.jpg, парциальные молярные величины [напр., стандартные изменения Т.п. в к.-л. процессе.4108-17.jpgнапр., стандартное изменение энтальпии при хим. р-ции равно разности энтальпий продуктов и исходных в-в, когда и те и другие находятся при заданных (выбранных) условиях, чаще всего при определенном внеш. давлении. Важные стандартные величины-стандартные энтальпии образования хим. соед.4108-18.jpg, энергии Гиббса образования хим. соед. 4108-19.jpg и т.п.

В статистической термодинамике пользуются аналогами энергии Гельмгольца и большого термодинамич. потенциала, к-рым отвечают соответственно канонич. и макрокано-нич. распределения Гиббса. Это позволяет рассчитывать Т. п. для модельных систем (идеальный газ, идеальный р-р) по молекулярным постоянным в-ва, характеризующим равновесную ядерную конфигурацию (межъядерные расстояния, валентные и торсионные углы, частоты колебаний и т. п.), к-рые м. б. получены из спектроскопич. и др. данных. Возможен расчет Т.п. через сумму по состояниям Z (интеграл по состояниям). Подобный подход позволяет установить связь Т. п. с молекулярными постоянными в-ва. Вычисление суммы (интеграла) Z для реальных систем-весьма сложная задача, обычно статистич. расчеты применяют для определения Т.п. идеальных газов.

Лит.: Кричевский И. Р., Понятия и основы термодинамики, М., 1962; Мюнстер А., Химическая термодинамика, пер. с нем., М., 1971.

М. В. Коробов.

Hosted by uCoz