Химическая энциклопедия
 
А Б В Г
Д Е Ж З
И К Л М
Н О П Р
С Т У Ф
Х Ц Ч Ш
Щ Э Ю Я

СТЕРЕОРЕГУЛЯРНЫЕ ПОЛИМЕРЫ , высокомол. соед., макромолекулы к-рых состоят из определенным способом соединенных между собой звеньев с одинаковым или разным, но закономерно периодически повторяющимся расположением атомов в пространстве. Конфигурация звена макромолекулы определяется пространств. расположением заместителей вокруг центров стереоизомерии-тетраэдрич. атома С, двойной связи или цикла. При одинаковой конфигурации звеньев макромолекула может иметь множество конформаций (см. Макромолекула, Конформационный анализ). При описании конформаций указывают величину двугранного угла q между старшими заместителями при связи С—С либо словесно обозначают расположение старших заместителей в ф-ле Ньюмена (транс-Т, гош-G; см. Номенклатура стереохимическая).

Тетраэдрич. атомы С в осн. цепи всех полимеров виниловых мономеров, имеющие в качестве двух эквивалентных заместителей отрезки осн. цепи бесконечной длины, не являются истинно асимметрическими. Истинно асимметрич. тетраэдрич. атомы С в осн. цепи полимера должны быть связаны не менее чем с тремя разными по строению группами в каждом мономерном звене, как, напр., в молекулах полипропиленоксида [—О—СН(СН3)—]n и полипептидов (—NH—CHR—СО—)n. Такие макромолекулы могут существовать в виде двух энантиомеров, или оптич. антиподов (см. Стереохимия).

Упорядоченное расположение эквивалентных центров стереоизомерии в осн. цепи, т. е. ее стерич. упорядоченность, наз. тактичностью. В каждом звене макромолекулы м.б. один или неск. центров стереоизомерии. Если имеется упорядоченность по отношению к одной или двум группам центров, молекула наз. соотв. моно- и дитактической. Полимер, в к-ром отсутствует к.-л. упорядоченность пространств. расположения всех центров стереоизомерии в главной цепи, наз. атактическим. Полимер, в к-ром каждое звено содержит один центр стереоизомерии и конфигурации этих центров одинаковы, наз. изотактическим. Полимер, в к-ром каждое мономерное звено содержит один центр стереоизомерии, но соседние центры имеют противоположные конфигурации, наз. синдиотактическим. В нек-рых случаях разл. типы стереорегулярности могут многократно реализовываться в пределах одной макроцепи. Последовательность звеньев с одинаковой конфигурацией наз. блоком, а полимер рассматриваемого строения-сте-реоблочным. Реальный полимер не бывает полностью изо- или синдиотактическим. Относит. расположение соседних пар (диад) или троек (триад) центров стереоизомерии, т.е. локальную стереоупорадоченность, наз. микротактичностью.

Регулярность в структуре звеньев макромолекулы создается в момент синтеза полимера (см. Стереоспецифи-ческая полимеризация). Характеристикой степени стереорегулярности (изотактичности) служит отношение констант скорости процессов изо- и синдиотактич. присоединения: kи/kc. С. п- с трудом поддаются рацемизации как физ. (размалывание, облучение, мех. обработка, нагревание), так и хим. (термодеструкция, изомеризация) методами.

К С. п. относят НК (1,4-цис-полиизопрен), гуттаперчу (1,4-транс-полиизопрен), целлюлозу и нек-рые ее производные.

Свойства С. п. Наиб. существенное отличие С. п. от атак-тических заключается в способности первых образовывать трехмерные кристаллы (см. Кристаллическое состояние полимеров). Однако полностью кристаллич. синтетич. полимеры еще не получены. Содержание кристаллич. фазы в полимерах определяет их физ. и мех. св-ва. Кристаллизующиеся С. п. по сравнению с аналогичными некристаллич. полимерами имеют более высокие т-ры плавления (размягчения), более низкую р-римость и намного более высокие показатели деформац.-прочностных св-в. Обычно чем выше степень изотактичности (т. е. доля изотактич. звеньев) полимера, тем выше и степень его кристалличности (табл. 1).

Для получения высококристаллич. полимеров необходимо, чтобы линейные макромолекулы имели не только высокую степень микротактичности (изо- или синдио-), но и регулярную структуру цепи на больших участках. К образованию стабильных кристаллов способны регулярные отрезки цепи, включающие 20-30 мономерных звеньев. При нерегулярном построении цепи кристаллизация оказывается возможной, если заместители при углеродных атомах не слишком различаются по размерам (как, напр., в поливиниловом спирте).

Стереорегулярность является необходимым, но не достаточным условием для кристаллизации полимеров. Нек-рые макромолекулы, даже обладая абс. геом. регулярностью, не способны кристаллизоваться. Это обусловлено тем, что мономерные звенья в них без разрыва цепи не могут занимать положения, необходимые для образования кристаллич. решетки. Для данной структуры полимера элементарная ячейка строго фиксирована и не зависит от размеров макромолекулы. Параметры кристаллич. решеток (см. Кристаллы), характеризующие наиб. устойчивые формы кристаллов нек-рых С. п., приведены в табл. 2. Упаковка полимерных цепей в кристаллической решетке осуществляется с макс. заполнением пространства таким образом, что между атомами различных цепей достигается миним. расстояние.

4085-9.jpg

Большинство С. п. имеют изотактич. структуру, и только полипропилен, полибутадиен, полимеры нек-рых полярных мономеров (напр., винилхлорида), полученные методом радикальной полимеризации при низких т-рах, наряду с изо-тактической имеют и синдиотактич. структуру.

Полипропилен теоретически может иметь шесть стерео-регулярных форм, две из к-рых (изо- и синдиотактич.) получены в результате полимеризации пропилена по типу "голова к хвосту" на катализаторах Циглера - Натты. Из остальных четырех возможных структур -трео- и эритро-диизотактические, трео- и эритро-дисиндиотактические, к-рые могли бы образоваться при полимеризации пропилена по типу "голова к голове", получена (сополимеризацией этилена с 2-бутеном) лишь одна. Из шести теоретически возможных структур поли-1-бутена синтезирована только изотактическая, существующая в виде двух кристаллич. модификаций.

Поли-a-олефины, содержащие более 4 атомов в боковой цепи, не способны кристаллизоваться (вероятно, из-за стерич. затруднений). Однако если такие заместители плотно упакованы по всей длине цепи, они склонны образовывать (между длинными осн. цепями) небольшие кристаллиты друг с другом и с заместителями соседних макромолекул. Возможность кристаллизации больших боковых цепей приводит к тому, что с ростом длины заместителя в мономерном звене т-ры плавления поли-a-олефинов уменьшаются от макс. значения для изотактич. полипропилена (ок. 170°С) до — 55 °С для полигексена, а затем возрастают почти до 100 °С для высших поли-a-олефинов.

Конформация цепей полимеров виниловых мономеров определяется конфигурацией последоват. асимметрич. атомов С, фрагмента —CHR—. В изотактич. полимерах (—СН2—CHR—)n плоская зигзагообразная конформация цепи невозможна из-за стерич. отталкивания соседних групп R. Вследствие этого происходит последоват. транс-гош-ориентация связей и цепь приобретает спиральную конфор-мацию, закрученную влево или вправо. Изотактич. макромолекулы могут образовывать спирали разных видов, а синдиотактические - могут существовать не только в виде спирали, но и в виде плоского зигзага. В тех полимерах, у к-рых радикалы не слишком объемны, спираль содержит три мономерных звена на виток (тип 31), как, напр., у изотактич. полипропилена (табл. 2). В случае полимеров, содержащих объемные боковые группы, образуются более развернутые спирали. Так, спираль в макромолекуле поливинилнафталина содержит четыре звена в витке (тип 41). Спирально-упорядоченные структуры макромолекул характерны для полипептидов, белков, нуклеиновых к-т. Форма и размер заместителей в мономерном звене С. п. определяют не только параметры спиральной конформации цепей в решетке, их т-ры плавления, но и скорость кристаллизации, р-римость и осн. деформац.-прочностные св-ва. Изотактич. полимеры, содержащие очень объемные заместители, характеризуются высокими т-рами плавления и стеклования (табл. 2).

Конформация макромолекул влияет на св-ва полимера. Напр., регулярная зигзагообразная конформация 1,4-транс-полибутадиена обусловливает жесткость и хрупкость полимера, а нерегулярная зигзагообразная конформация цис-изомера обеспечивает ему низкую т-ру плавления и высоко-эластич. св-ва.

Поскольку часто С. п; обладают лучшим комплексом физ.-мех. св-в, чем соответствующие атактич. полимеры, в пром-сти выпускают ряд С. п., напр. изотактич. полипропилен, синдиотактич. поливинилхлорид, стереорегулярный бутадиеновый каучук.

Методы установления стереорегулярности полимера. Регулярность в структуре звеньев не м. б. изменена никакими физ. воздействиями. В то же время конформац. регулярность полимера определяет его физ. состояние. Непосредств. информацию о характеристиках структурной и конформац. регулярности кристаллич. полиолефинов (изо- или синдио-тактичность, параметры спирали) получают методом рент-геноструктурного анализа.

Регулярное строение цепи облегчает кристаллизацию полимера. Поэтому количеств. данные о кристалличности в нек-рых случаях м. б. использованы для оценки стерео-регулярности полимера. Однако кристалличность зависит от предыстории образца, т-ры съемки рентгеновского спектра, степени ориентации и нек-рых др. факторов. Поэтому величины степени кристалличности непосредственно не характеризуют структурную регулярность полимера, а только коррелируют с ней.

В лаб. и пром. практике широко распространен метод определения стереорегулярности полимеров путем экстракции их разл. р-рителями. Напр., фракция полипропилена, нерастворимая в кипящем н-гептане, является высококристаллической; фракция, р-римая в диэтиловом эфире, -аморфной. Следует учитывать, что на р-римость полимера влияет не только стереорегулярность, но и его мол. масса.

Весьма чувствительны к структурным и конформац. характеристикам макромолекул резонансные (ЯМР), ИК спектральные и релаксац. методы. Названные методы исследования С. п. дополняют друг друга, и для повышения надежности результатов целесообразно их совместное использование.

4086-1.jpg

Лит.: Гейлорд Н., Марк Г.Ф., Линейные стереорегулярные полимеры, пер. с англ., М., 1962; Хаггинс М.Л. [и др.], "Успехи химии", 1965, т. 34, в. 12, с. 2281-92; Манделькерн Л., Кристаллизация полимеров, пер. с англ., М. -Л., 1966; Джейл Ф. X., Полимерные монокристаллы, пер. с англ., Л., 1968; Миллер Р. Л., в кн.: Кристаллические полиолефины, под ред. Р.А. Раффа и К. В. Дака, т. 2, М., 1970, с. 165-241; Фочер Дж. А., Рединг Ф. П., там же, с. 242-79; Чирков Н. М., Матковский П. Е., Дьячковский Ф. С., Полимеризация на комплексных металлоорганических катализаторах, М., 1976; Дженкинс А., "Высокомолекулярные соединения", сер. "А", 1982, т. 24, № 1, с. 198-219. П.Е. Матковский.


Hosted by uCoz