Химическая энциклопедия
 
А Б В Г
Д Е Ж З
И К Л М
Н О П Р
С Т У Ф
Х Ц Ч Ш
Щ Э Ю Я

ЦВЕТОМЕТРИЯ (колориметрия), наука о методах измерения и количеств. выражения цвета. Последний рассматривают как характеристику спектрального состава света (в т. ч. отраженного и пропускаемого несамосветящимися телами) с учетом зрительного восприятия. В соответствии с трехкомпонентной теорией зрения любой цвет можно представить как сумму трех составляющих, т. наз. основных цветов. Выбор этих цветов определяет цветовую координатную систему, в к-рой любой цвет м. б. изображен точкой (или цветовым вектором, направленным из начала координат в эту точку) с тремя координатами цвета - тремя числами. Последние соответствуют кол-вам основных цветов в данном цвете при стандартных условиях его наблюдения.
Фундам. характеристикой цвета, его качеством, является цветность, к-рая не зависит от абс. величины цветового вектора, а определяется его направлением в цветовой координатной системе. Поэтому цветность удобно характеризовать положением точки пересечения этого вектора с цветовой плоскостью, к-рая проходит через три точки на осях основных цветов с координатами цвета, равными 1.
Св-ва цветового зрения учитываются по результатам экспериментов с большим числом наблюдателей с нормальным зрением (т. наз. стандартным наблюдателем). В этих экспериментах зрительно уравнивают чистые спектральные цвета (т. е. цвета, соответствующие монохроматич. свету с определенной длиной волны) со смесями трех осн. цветов. Оба цвета наблюдают рядом на двух половинках т. наз. фотометрич. поля сравнения. В результате строят графики ф-ций сложения цветов, или кривые сложения цветов, в координатах "соотношение основных цветов - длина волны спектрально чистого цвета".
Поскольку, согласно закону Г. Грассмана (1853), при данных условиях основные цвета производят в смеси одинаковый визуальный эффект независимо от их спектрального состава, по кривым сложения цветов можно определить координаты цвета сложного излучения. Для этого сначала цвет последнего представляют в виде суммы чистых спектральных цветов, а затем определяют кол-ва основных цветов, требуемых для получения смеси, зрительно неотличимой от исследуемого цвета.
Фактически основой всех цветовых координатных систем является Международная колориметрич. система RGB (от англ. Red, Green, Blue - красный, зеленый, синий), в к-рой основными цветами являются красный (соответствующий излучению с длиной волны6013-107.jpg= 700 нм), зеленый (6013-108.jpg= 546,1 нм) и синий (6013-109.jpg= 435,8 нм). Измеряемый цвет С в этой системе м. б. представлен ур-нием: C = R + G + B, где R, G, и В-координаты цвета С. Однако большинство спектрально чистых цветов невозможно представить в виде смеси трех упомянутых основных цветов. В этих случаях нек-рое кол-во одного (или двух) из основных цветов добавляют к спектральному цвету и полученную смесь уравнивают со смесью двух оставшихся цветов (или с одним оставшимся цветом). В приведенном выше ур-нии это учитывается переносом соответствующего члена из левой части в правую. Напр., если был добавлен красный цвет, то C + R = G + B, или C= -R+G + B. Наличие отрицат. координат для нек-рых цветов - существенный недостаток системы RGB.
Наиб. распространена международная система XYZ, в к-рой основные цвета X, Y и Z - нереальные цвета, выбранные так, что координаты цвета не принимают отрицат. значений, причем координата Y равна яркости наблюдаемого окрашенного объекта.
Чтобы определить координаты X, У, Z для данного цвета (объекта) необходимо знать: 1) ф-цию Е6014-1.jpg - распределение энергии излучения источника освещения по длинам волн; 2) ф-цию6014-2.jpg- распределение по длинам волн интенсивности излучения, отраженного или пропущенного объектом; 3) ф-ции сложения цветов, называемые иногда также ф-ция-ми восприятия стандартного наблюдателя,6014-3.jpg
В Ц. используют источники света А (близкий к лампе накаливания), С и D65, имитирующие солнечное освещение в разл. время суток. Их характеристики изучены и опубликованы в виде таблиц. Ф-ции восприятия6014-4.jpg при разных размерах измеряемого поля, т. е. при разных сферич. углах наблюдения (обычно 2° и 10°), также приводятся в справочной литературе. Ф-цию6014-5.jpg измеряют с помощью спектрофотометров. Тогда координаты цвета данного объекта можно рассчитать по ур-ниям:

6014-6.jpg

Интегрирование производится в диапазоне длин волн видимого излучения: от 380 до 760 нм.
Имеются также приборы - спец. фотоэлектрич. колориметры, характеристики фильтров к-рых воспроизводят ф-ции восприятия человеческого глаза. С помощью таких приборов сразу определяют величины6014-7.jpg
Цветность определяется координатами цветности х, у, z, к-рые рассчитывают по ур-ниям:

6014-8.jpg

Т. е. цветность равна проекции на цветовую плоскость (пересекающую оси координат при X=Y=Z=l) точки, характеризующей данный цвет.
Недостаток цветовой координатной системы XYZ - неравноконтрастность: в зависимости от области цветового пространства на одинаковые по величине участки приходится разное число (от 1 до 20) цветовых порогов, т. е. границ различения цветов. Это существенно затрудняет согласование измерений с визуальной оценкой.
Поэтому была предложена (1976) цветовая координатная система Lab, где L - яркость, или светлота, к-рая изменяется от 0 (абсолютно черное тело) до 100 (белое тело), координаты -а, , -b, +b определяют зеленый, красный, синий и желтый цвета соответственно.
Цветность представляет собой проекцию данного цвета на плоскость ab. Система Lab более однородна и дает лучшую корреляцию с визуальными определениями, т. к. ее параметры - L, цветность и координаты а и b - близки привычным субъективным характеристикам цвета: светлоте, насыщенности и цветовому тону соответственно.
Восприятие цвета существенно зависит от условий наблюдений. Поэтому в любой цветовой координатной системе при изменении условий изменяются координаты цвета. Это явление называется метамеризмом. Различают 4 основных вида метамеризма, связанные с изменением: 1) источника освещения; 2) наблюдателя; 3) размера измеряемого поля; 4) геометрии наблюдения (напр.. под каким углом смотрят на объект; вида освещения - диффузное или направленное).
Измерения цвета лежат в основе инструментальных методов оценки качества окраски разл. материалов красителями, расчета смесевых рецептур крашения, оптимизации и автоматизации хим.-технол. процессов крашения и произ-ва красителей.

Лит.: Гуревич М. М., Цвет и его измерение, М.-Л., 1950; Джадд Д., Вышецки Г., Цвет в науке и технике, пер. с англ., М., 1978.

И.М. Мовшович.

Hosted by uCoz